Theoretical Studies of B_2Li_n (n = 1-4)

Gantasala Naga Srinivas,[†] Tracy P. Hamilton,[†] Jerry A. Boatz,[‡] and Koop Lammertsma*,^{†,8}

Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, Air Force Research Laboratory, AFRL/PRSP, 10 East Saturn Blvd, Edwards AFB, CA-93524, and Department of Chemistry, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

Received: June 23, 1999; In Final Form: September 16, 1999

Structures and energies of the binary B_2Li_n (n = 1-4) clusters are predicted with the HF, MP2, and B3LYP methods using the 6-31G(d) basis set, including energy evaluations at G2MP2 and CBS-Q and the larger 6-311+G(2d) basis set for B3LYP. All systems except B_2Li_4 are also computed with the CASSCF method because of spin contamination for several of the open-shell systems. These were followed by energy evaluations with multiconfigurational perturbation theory. The global B_2Li minimum has a $C_{2\nu}$ triangular form of which the ²B₁ state is 13 kcal/mol more stable than the ²A₁ state. A bent double Li-bridged structure ($C_{2\nu}$) is the global B_2Li_2 minimum with a 2.0 kcal/mol inversion barrier. The global minimum for B_2Li_3 is a triple Li-bridged propellane-like structure (D_{3h}), and for B_2Li_4 it is the quadruple Li-bridged structure (D_{4h}). All these structure have a high degree of ionicity, but in B_2Li_4 stabilization through LiLi interactions also become important. Structural patterns for the isomers of these clusters are examined. Cohesive energies ($B_2Li_n \rightarrow B_2 + Li_n$) and Li and Li₂ elimination energies are analyzed in terms of cluster stabilities.

Introduction

Small boron-lithium clusters are of interest as high-energy additives to cryogenic hydrogen.¹⁻⁶ An understanding of the bonding and energetics of these species is therefore important for the design of such fuel additives. Questions about what these clusters look like and how stable they are need to be answered. It is already well-known from the literature that polylithium compounds prefer nonclassical structures that are very different from their common hydrogen analogues.⁷⁻¹⁰ For example, SiLi₄ prefers a $C_{2\nu}$ over a T_d geometry.¹¹ Hyperlithiated compounds with unconventional structures are known, e.g., OLi₄, OLi₆; SLi₆; CLi_x, *x* = 6, 8, 10, 12; FLi₃, FLi₅; ClLi₃, ClLi₅; PLi₅.^{12–17} Lithium carbides and lithiated hydrocarbons are of interest in intercalated lithium-graphite (as solid-state ionic conductors) and for their importance as organolithium reagents in organic synthesis.^{18–22} Even the simplest carbon-lithium clusters offer structural surprises. For example, the doubly bridged D_{2h} structure is the most stable C_2Li_2 isomer,²⁰ while the global C_2 -Li₄ minimum is a $Li^+C_2^{2-}Li_3^+$ triple ion "salt".²² These two examples are illustrative of the differences in bonding between hydrocarbons and their lithium analogues. Despite the use of lithium boride alloys as anode material, very little is known of boron-lithium clusters. This is sharply contrasted by the abundance of information on boranes, which have been scrutinized for their multicenter bonding.²³ This paper explores how substituting hydrogens for lithium atoms will affect this bonding. Previously, we showed for BLi_n (n = 1-8) that each boronlithium cluster has a large cohesive energy and that boron has a maximum coordination number of six lithiums.^{24,25} In the present study we report on the binary B_2Li_n (n = 1-4) clusters containing two boron atoms.

Computational Methods

The geometries of the B₂Li_n (n = 1-4) clusters were optimized at Hartree-Fock (HF) self-consistent field, at Møller-Plesset second-order perturbation (MP2) theory, and at density functional theory (DFT) using Becke's three-parameter hybrid exchange functional combined with the Lee-Yang-Parr correlation functionals (B3LYP), all using the 6-31G(d) basis set.^{10,26,27} These are shown in Figure 1 together with geometrical parameters. The nature of the stationary points was determined by evaluating the second derivatives of the energy (Hessian matrix).²⁸ More accurate energies were obtained with the G2MP2 and CBS-Q methods.^{29,30} The G2MP2, based on MP2/ 6-31G(d) geometries and energies obtained with the quadratic configuration interaction QCISD(T) method with additional basis set and higher order level corrections, reportedly gives enthalpies of formation to within 2.5 kcal/mol, while the (correlated) complete basis set (CBS) extrapolation method CBS-Q, which also uses MP2/6-31G* geometries, is an alternative also known for its high accuracy. Because of high-spin contamination for some of the B₂Li, B₂Li₂, and B₂Li₃ structures, and since the spin-projected MP2 energies (PMP2) gave little improvement over the unprojected MP2 energies, additional optimizations were carried out with the complete active space (CASSCF) method (see Figure 1) followed by multiconfigurational quasidegenerate second-order perturbation theory (MC-QDPT2) for higher accuracy in the energies.³¹ For B₂Li we used an active space consisting of seven electrons distributed over 12 orbitals, denoted as (7,12). For B₂Li₂ it is denoted as (8,10), and for B_2Li_3 it is denoted as (9,9); UHF natural orbitals (occupation numbers between 1.9992 and 0.0002) are used to define the CAS for the B₂Li₃ system, since CASSCF(9,11) encountered convergence problems with MO's.32 The effect of a larger basis set (6-311+G(2d)) on the energies was also investigated for the more economical B3LYP method using geometries optimized at B3LYP/6-31G(d). Total and relative energies of the B₂Li_n (n = 1-4) isomers are given in Tables

[†] University of Alabama at Birmingham.

[‡] Air Force Research Laboratory.

[§] Vrije Universiteit.

Figure 1. B_2Li_n (n = 1-4) structures with geometrical parameters at B3LYP, MP2 (in parentheses), HF (in brackets), and CASSCF (in italics) with the 6-31G(d) basis set.

1–4. All the calculations were carried out with the GAUSSI-AN94 and GAMESS program packages.^{33,34}

Results and Discussion

Before discussing each B_2Li_n cluster separately, we make some general observations with respect to their geometries. A diversity of structures has been identified with little or no conventional bonding patterns. However, it is evident that in all these structures the two boron atoms are strongly bonded to each other. In fact, the BB bond lengths vary little among these structures, nor are they very sensitive to the different theoretical levels. Thus, the average BB distance is 1.555 ± 0.055 Å at B3LYP. Slightly longer bonds result at both the MP2 ($1.562 \pm$ 0.054 Å) and HF (1.558 ± 0.043 Å) levels of theory. All lithium diborides prefer structures with a maximum of bridging lithiums. Isomers become increasingly less stable with a growing number of terminal lithiums. These terminal BLi bonds have an average BLi distance of 2.135 ± 0.136 Å at B3LYP. Again, slightly longer bonds result at MP2 (2.169 \pm 0.120 Å) and HF (2.170 \pm 0.119 Å). The bridging BLi bonds are weaker and slightly longer with an average distance of 2.212 \pm 0.444 Å at B3LYP. As above, larger distances are found at MP2 (2.241 \pm 0.382 Å) and HF (2.272 \pm 0.487 Å).

Because no experimental data are yet available for the B₂Li_n clusters, it is important to determine minimum energy structures with some degree of accuracy. Our previous extensive high-level ab initio studies on BLi_n (n = 1-8) have shown the need for a careful evaluation of the theoretical methods. For example,

Figure 20.

whereas B3LYP/6-31G* performs admirably for the smaller BLi_n clusters (n = 1-3) the agreement with MCQDPT2 and G2MP2 for the larger ones (n = 4-8) is somewhat less satisfactory. Because these evaluations relied also on boron cohesive energies as well as on Li and Li₂ elimination energies, we perform similar analyses for the clusters of the present study. These data, corrected for zero-point energies, are summarized in Table 5 with the boron cohesive energy defined as the enthalpy for the B₂Li_n \rightarrow B₂ + Li_n reaction.

From the relative and cohesive energies (Tables 1–5) it is evident that the agreement between the theoretical methods varies substantially. As expected, the SCF performance is rather poor and will therefore not be discussed. Except for B_2Li_4 , the relative and cohesive energies at MP2/6-31G* compare reason-

TABLE 1: Total (au) and Relative Energies (kcal/mol) for the B_2Li System^{*a*}

str/sym/level	total energy	$\langle S^2 \rangle$	relative energy	NIF (cm ⁻¹)		
	1a C ₂	$({}^{2}B_{1})$				
HF	-56.56928	0.759	0.0	0		
MP2	-56.722 42	0.759	0.0	0		
B3LYP	-56.991 09	0.753	0.0	0		
B3LYP(L)	-57.00692		0.0			
G2MP2	-56.838 18		0.0			
CBS-Q	-56.834 63		0.0			
CASSCF(7,12)	-56.728 24		0.0			
MCQDPT2	-56.773 16		0.0			
1b C_{2n} (² A ₁)						
HF	-56.54740	0.863	13.7	0		
MP2	-56.701 56	0.857	13.1	0		
B3LYP	-56.970 37	0.750	13.0	0		
B3LYP(L)	-56.987 72		12.0			
G2MP2	-56.817 81		12.8			
CBS-Q	-56.815 37		12.1			
CASSCF(7,12)	-56.706 79		13.5			
MCQDPT2	-56.753 12		12.6			

 a Using the 6-31G(d) basis set, except for B3LYP(L), which denotes the use of 6-311+G(2d). NIF indicates the number of imaginary frequencies.

ably well with those at G2MP2, CBS-Q, and MCQDPT2. The difference between B3LYP and these methods is similar. Because it is the most economical one, we will focus on this method to some degree throughout the following sections in which we discuss the geometries and energetics of the various B_2Li_n clusters. Only B3LYP/6-31G* geometrical parameters are used in the discussion unless specifically noted otherwise. We refrain from discussing features of the BLi_n and Li_n fragments that have already been reported upon.^{24,25}

B₂**Li**. The triangular form is the preferred structure for B₂Li of which the ²B₁ state (**1a**) is the global minimum being ca. 13.0 kcal/mol more stable than the ²A₁ state (**1b**) at all levels of theory employed. The BB distance of 1.565-1.569 Å is similar for both structures, which is shorter than the 1.618 Å for B₂ (³\Sigma⁻_g)³⁵ but longer than the other lithiated diborides of this study (vide infra). These bond lengths are rather insensitive to the theoretical method employed except for SCF, which generally gives too long bonds. In contrast, the BLi distances differ for the two structures and they vary with the theoretical method. Structure **1b** is the tighter of the two with 0.121 Å shorter BLi distances than the 2.260 Å of **1a**. With CASSCF-(7,12), used because of a small degree of spin contamination at HF and MP2, **1a** and **1b** have respectively 0.034 and 0.045 Å longer BLi bond lengths.

Inspection of the molecular orbitals reveals only a small lithium contribution. Essentially, the lithium atom donates its single valence electron to one of the half-filled π_u orbitals of $B_2({}^{3}\Sigma_{g}^{-})$ leading to the two electronic states ${}^{2}B_1$ and ${}^{2}A_1$. This charge transfer increases the BB bond order and consequently reduces its bond length relative to $B_2({}^{3}\Sigma_{g}^{-})$, which is also reflected in the increased BB vibrational stretching frequency (i.e., 1118 cm⁻¹ for B₂Li (**1a**) and 1014 cm⁻¹ for B₂ at B3LYP). The natural population analysis (NPA) of **1a** also indicates significant transfer of charge from Li to B₂, which is reflected in the Li charges of $+0.73e.^{36}$ Not surprisingly, this transfer of charge is even more pronounced in the tighter structure **1b**, i.e., +0.85e for Li. It is evident that the BLi interactions in these structures are very polar.

The stability of B_2Li , and thus the tightness of the BLi interaction, is also evident from its cohesive energy of 63 kcal/mol at G2MP2 (62 kcal/mol at CBS-Q). We note that the

TABLE 2: Total (au) and Relative Energies (kcal/mol) for the B₂Li₂ System^{*a*}

	total		relative	
str/sym/level	energy	$\langle S^2 \rangle$	energy	NIF (cm^{-1})
		(1.4)		
	$2a C_2$	$v(A_1)$	0.0	0
HF	-64.060 43		0.0	0
MP2	-64.257 28		0.0	0
B3LYP	-64.579 28		0.0	0
B3LYP(L)	-64.596 78		0.0	
G2MP2	-64.375 03		0.0	
CBS-O	-64.368 68		0.0	
CASSCF(8.10)	-64.21198		0.0	
MCODPT2	-6429759		0.0	
mequi 12	01.277.57		0.0	
	2a C_2	$_{2v}({}^{3}\mathrm{B}_{2})$		
HF	-64.081 14	2.251	-13.0	1(149i)
MP2	-64.235 45	2.200	13.7	1(71i)
B3LYP	-64.56478	2.026	9.1	1(410i)
B3LYP(L)	-64.583 68		8.2	
G2MP2	-6434110		21.3	
CBS-0	-64 339 76		18.1	
	-64 179 26		21.2	
$CASSCF(\delta, 10)$	-04.178 20		21.2	
MCQDP12	-64.270 51		17.0	
	2b D_{2}	$h(^1A_a)$		
HF	-64.046.76	.n (g)	86	0
MP2	-64 273 86		-10.0	Õ
	-64 575 07		26	1(1015)
	-04.575 07		2.0	1(1011)
BSLIP(L)	-04.393 01		2.4	
G2MP2	-64.3/1 85		2.0	
CBS-Q	$-64.366\ 01$		1.7	
CASSCF(8,10)	-64.20757		2.8	
MCQDPT2	-64.294 26		2.1	
	2h Da	$(^{3}\mathbf{R}_{2})$		
UE	-64.001.70	$h(D_{3u})$	-10.8	0
	-04.091 /9	2.034	-19.8	0
MP2	-64.262.00	2.033	-2.9	0
B3LYP	-64.583 99	2.008	-3.4	0
B3LYP(L)	-64.60205		-3.3	
G2MP2	-64.358 53		10.4	
CBS-Q	-64.356 56		7.6	
CASSCF(8,10)	-64.18995		13.8	
MCODPT2	-64.28474		8.1	
	• •	(111)		
	$2c D_{\infty}$	$h_h(\mathbf{I}\mathbf{I}\mathbf{I}_u)$	•	0
HF	-64.057 24		2.0	0
MP2	-64.207 92		30.9	0
B3LYP	-64.544 99		21.5	0
B3LYP(L)	-64.563 13		21.1	
G2MP2	-64.319 52		34.8	
CBS-O	-64.314.57		34.0	
CASSCE(8.10)	-64,116,02		60.2	
MCODPT?	-64.230.55		42.1	
WICQDI 12	04.230 33		42.1	
	$2c D_{\sim}$	$\Sigma_h (^3\Sigma_g)$		
HF	-64.099 79	2.031	-24.7	0
MP2	-64.237 82	2.029	12.2	0
B3LYP	-64.572.08	2.010	4 5	0
B3LYP(L)	-64 589 05	2.010	1.5	0
COMDO	_64 224 00		74.0	
OZIVIEZ	-04.330.08		24.4 21.5	
CR2-CEC 10	-04.334 30		21.5	
CASSCF $(8,10)$	-64.147 49		40.5	
MCQDPT2	-64.253 18		27.9	

^{*a*} See footnote of Table 1.

cohesion energy of 56.3 kcal/mol at B3LYP is slightly less, while the much smaller energies at MP2 and HF for this dissociation of Li indicate the inadequacy of these methods for this system.

B₂Li₂. Three stationary points were characterized on each of the singlet and triplet surfaces. The global minimum at the higher levels of theory is the singlet ¹A₁ structure **2a**, whereas MP2 and B3LYP prefer instead the ¹A_g and ³B_{3u} states of planar **2b**, respectively. Structure **2a** has a puckering angle of ca. 110°. Inversion via planar **2b** requires only 2.6 kcal/mol (at B3LYP), indicating the butterfly structure to be highly flexible. G2MP2

	total		relative			
str/sym/level	energy	$\langle S^2 \rangle$	energy	NIF (cm^{-1})		
54, 5711, 10, 01	energy	(57	energy	· · · · · · · · · · · · · · · · · · ·		
	$3a D_{3h}$	$({}^{2}A_{1}')$				
HF	-71.574 61	0.776	0.0	1(720i)		
MP2	-71.791 81	0.776	0.0	0		
B3LYP	-72.168 44	0.755	0.0	0		
B3LYP(L)	-72.187 95		0.0			
G2MP2	-71.893 90		0.0			
CBS-O	-71.889 41		0.0			
CASSCF(9.9)	-71.670 69		0.0			
MCODPT2	-71.81190		0.0			
	, 11011 , 0	2.10	0.0			
	3b C _s	$(^{2}A')$	2.0			
HF	-/1.569 80	1.523	3.0	0		
MP2	collapsed to 3a					
B3LYP	-72.147 23	0.768	13.3	0		
B3LYP(L)	-72.166 11		13.7			
CASSCF(9,9)	-71.652 46		11.4			
MCQDPT2	-71.786 53		15.9			
-	2.0	(2 D)				
HE.	30 C _{2i}	$(^{-}B_{1})$	11.4	1(2(7:)		
HF	-/1.556 40	0.793	11.4	1(26/1)		
MP2	-71.748 27	0.793	27.3	1(5391)		
B3LYP	-72.136 68	0.757	19.9	0		
B3LYP(L)	-72.155 42		20.4			
G2MP2	-71.854 11		25.0			
CBS-Q	-71.850 19		24.6			
CASSCF(9,9)	-71.637 01		21.1			
MCQDPT2	-71.770 47		25.9			
	3d C	(2 P)				
ШĘ	71 550 40	(D_1)	0.5	1(110:)		
НГ МР2	-/1.559 49	1.337	9.5	1(1181)		
MP2	-/1./43 10	0.820	30.6	0		
B3LYP	- 72.135 96	0.755	20.4	0		
B3LYP(L)	-72.15365		21.5			
G2MP2	-71.851 57		22.8			
CBS-Q	-71.847 67		22.4			
CASSCF(9,9)	-71.615 71		34.5			
MCQDPT2	-71.759 24		33.0			
	3d' Ca	$(^{2}\Delta_{1})$				
HE	-71 5/2 /9	0.9/8	20.2	0		
MD2	-71.342.49	0.940	20.2	0		
	72 121 60	0.004	39.5	0		
	-72.121.09	0.769	29.5	0		
B3LYP(L)	-/2.141 8/		28.9			
CASSCF(9,9)	-/1.600.68		43.9			
MCQDP12	-71.753 34		36.7			
	$3e D_{col} (^{2}\Pi_{v})$					
HF	-71.401 03	0.767	108.9	1(43i)		
MP2	-71.546 18	0.767	154.1	0		
B3LYP	-71.969.20	0.755	125.0	Õ		
B3LYP(L)	-71 981 09	0.700	129.8	0		
G2MP2	-71 671 62		130 5			
CBS O	-71 664 10		1/1 2			
	71 429 92		141.3			
CASSCE(9,9)	-/1.438 83		145.5			
MCQDP12	-/1.538/29		1/1./			

^a See footnote of Table 1.

gives a similar inversion barrier (2.0 kcal/mol) as do CBS-Q, CASSCF, and MCQDPT2, but MP2 favors **2b** instead by as much as 10.4 kcal/mol. On becoming planar, the 1.532 Å BB bond length does not alter, even though the BLi distances decrease with 0.03 Å as a result of stronger ionic interactions. The NPA charges on Li(+) and B(-) are larger for **2b** (0.85*e*) than for **2a** (0.75*e*). Apparently, the second Li atom donates its valence electron to the singly occupied π orbital of B₂Li. This increases the charges and the BB bond order (which is reflected in 0.07 Å shorter BLi distances and a 0.03 Å shorter BB bond length, respectively), culminating in a tighter packed structure of high ionic character. This increased ionicity of **2a**, compared to B₂Li, is supported by the noted NPA charges. Its cohesive energy (B₂Li₂ \rightarrow B₂ + Li₂) amounts to a large 102 kcal/mol at G2MP2 and CBS-Q (and 6 kcal/mol less at B3LYP). Its 66

 TABLE 4: Total (au) and Relative Energies (kcal/mol) for the B₂Li₄ System^a

	total	relative			
str/sym/level	energy	energy	$NIF (cm^{-1})$		
	$4a D_{Ab}$				
HF	-79.041 30	0.0	0		
MP2	-79.296 22	0.0	0		
B3LYP	-79.727 47	0.0	0		
B3LYP(L)	-79.749 95	0.0			
G2MP2	$-79.402\ 81$	0.0			
CBS-Q	-79.394 15	0.0			
	4b C ₃	••			
HF	-79.042 87	-1.0	0		
MP2	-79.29098	3.3	0		
B3LYP	-79.724 34	2.0	0		
B3LYP(L)	-79.744 89	3.2			
G2MP2	-79.398 23	2.9			
CBS-Q	-79.390 86	2.1			
	4c C_{2}	**			
HF	-79.035 37	3.7	0		
MP2	-79.27791	11.5	0		
B3LYP	-79.71478	8.0	0		
B3LYP(L)	-79.734 35	9.8			
G2MP2	-79.385 52	10.8			
CBS-Q	-79.377 68	10.3			
4d D _{2k}					
HF	-79.031 44	6.2	1(66i)		
MP2	-79.274 43	13.7	1(49i)		
B3LYP	-79.711 59	10.0	1(62i)		
B3LYP(L)	-79.731 69	11.5			
G2MP2	-79.382 35	12.8			
CBS-Q	-79.375 18	11.9			
4e <i>C</i> ₆					
HF	-78.981 49	37.5	0		
MP2	-79.156 91	87.4	0		
B3LYP	-79.617 57	69.0	0		
B3LYP(L)	-79.634 26	72.6			
G2MP2	-79.285 19	73.8			
CBS-Q	-79.276 43	73.9			

^a See footnote of Table 1.

kcal/mol endothermicity (G2MP2, 60 kcal/mol at B3LYP) for Li elimination is even slightly more (by 3 kcal/mol) than that for B_2Li (² B_1).

On the triplet surface, **2a** (${}^{3}B_{2}$ state) has a tetrahedral form with a puckering angle of less than 90° and a LiLi distance of only 2.858 Å (B3LYP). This transition structure is 17 kcal/mol less stable than the ${}^{1}A_{1}$ singlet at MCQDPT2. On the other hand, the ${}^{3}B_{3u}$ state of rhombic **2b** is a local minimum and only 8.4 kcal/mol (G2MP2, 5.0 kcal/mol at CBS-Q) less stable than the singlet ${}^{1}A_{g}$ state. We note that the energy differences for these triplet structures are only consistent at the higher levels of theory.

The linear ${}^{1}\Pi_{u}$ state isomer **2c** is a minimum energy structure with a longer BB distance than in **2a** $({}^{1}A_{1})$ and **2b** $({}^{1}A_{\sigma})$. This suggests that in 2c the Li atom does not donate its valence electron to the $\Pi_{\rm u}$ orbitals of B₂ as effectively as in **2a** and **2b**, where the Li atoms are bridging rather than terminal. This notion is also supported by the NPA charges in Table S1 in Supporting Information. Structure 2c is significantly less stable than the butterfly form 2a. The energy difference depends strongly on the theoretical method employed and ranges, for example, from 21.5 to 34.8 to 42.1 kcal/mol at B3LYP, G2MP2, and MC-QDPT2, respectively. Because of the need for a multiconfigurational approach in these "electron-deficient" linear systems, we consider the energy obtained with multiconfigurational quasidegenerate perturbation theory to be the most accurate. The energy difference of the corresponding ${}^{3}\Sigma_{g}$ state isomer of 2c (also a minimum) with 2a varies less with the more sophisticated theories (i.e., 24.4 and 27.9 kcal/mol for G2MP2 and MCQDPT2) but is surprisingly small at B3LYP (4.5 kcal/ mol) and large at CASSCF(7,10) (40.5 kcal/mol). The triplet structure is more stable than the singlet form with an energy difference of 14.2 kcal/mol at MCQDPT2.

B₂**Li**₃. Six minima were identified on the B3LYP hypersurface of doublet B₂Li₃, of which five are also stationary points at MP2. These structures extend the features already seen for the smaller homologues. The global minimum is the B_2 triple Li-bridged propellane structure **3a**. This structure is very similar to the butterfly B₂Li₂ structure **2a** but capped with another Li atom. Its BB bond length of 1.542 Å (B3LYP) is between those of singlet and triplet 2a, respectively, but its 2.159 Å BLi distance is slightly shorter. The NPA charge on the lithiums is +0.77e each, just as for **2a**. Evidently, all three Li atoms donate their valence electrons to the B₂ (${}^{3}\Sigma_{g}^{-}$) unit to occupy its σ_{g} and two $\pi_{\rm u}$ orbitals; the BB distance in B_2^{3-} ($^{2}\Sigma_{\rm g}$) is 1.630 Å (B3LYP). The Li dissociation energy for 3a of 55 kcal/mol at G2MP2 and CBS-Q, though, is 10 kcal/mol less than that for 2a, which suggests that the exothermicity is reduced on binding a third Li atom to B_2 . Because of the LiLi bonding in Li_n, this reduced bonding of the third Li atom is not reflected in the B₂ cohesive energies, which are 145, 102, and 63 kcal/mol at G2MP2 for B₂Li₃, B₂Li₂, and B₂Li, respectively, or ca. 42 kcal/ mol per added Li atom; the CBS-Q data are similar. Interestingly, B3LYP gives Li dissociation energies of ca. 60 kcal/mol for both **3a** and **2a** and a cohesive energy for **3a** identical to that from G2MP2 (145 kcal/mol). Binding energies at both the HF and MP2 levels of theory are less satisfactory.

Structure **3b** can be viewed as resulting from a Li side-on addition to the butterfly structure **2a**, while **3c** represents its planar form. This planarization requires 6.6 kcal/mol at B3LYP

TABLE 5: B₂ Cohesive Energies and Li and Li₂ Dissociation Energies (in kcal/mol)

	0		. .			
reaction	HF^{a}	$MP2^{a}$	B3LYP ^a	B3LYP(L) ^b	G2MP2	CBS-Q
			B ₂ Cohesion			
$B_2Li \rightarrow B_2 + Li$	38.2	44.8	56.3	58.5	63.0	62.1
$B_2Li_2 \rightarrow B_2 + Li_2$	72.0	94.4	96.0	98.4	102.3	102.2
$B_2Li_3 \rightarrow B_2 + Li_3$	114.3	152.2	145.5	148.1	144.6	142.7
$B_2Li_4 \rightarrow B_2 + Li_4$	130.2	173.1	163.0	166.7	159.7	160.6
			Li Dissociation			
$B_2Li_2 \rightarrow B_2Li + Li$	36.1	63.4	59.5	60.3	65.7	64.0
$B_2Li_3 \rightarrow B_2Li_2 + Li$	51.2	64.4	60.6	61.6	54.4	55.7
$B_2Li_4 \rightarrow B_2Li_3 + Li$	20.5	44.2	41.4	43.1	48.1	45.6
Li ₂ Dissociation						
$B_2Li_3 \rightarrow B_2Li + Li_2$	85.1	113.9	100.3	101.5	93.7	95.8
$B_2Li_4 \rightarrow B_2Li_2 + Li_2$	69.5	94.7	82.2	84.3	76.2	77.4

^{*a*} Using the 6-31G(d) basis set and inclusion of zero-point energy (ZPE) corrections. The MP2 values that involve B_2Li_3 use HF-ZPE corrections. ^{*b*} Using the 6-311+G(2d) basis set and B3LYP/6-31G(d) ZPE corrections. and 10 kcal/mol at MCQDPT2. Interestingly, B3LYP characterizes both structures as minima, while **3b** could not be obtained at MP2. Double-Li-bridged **3b** is less stable than the triplebridged form by 13.3 kcal/mol at B3LYP (15.9 kcal/mol at MCQDPT2).

The two single-Li-bridged structures **3d** (${}^{2}B_{1}$ state) and **3d'** (${}^{2}A_{1}$ state) differ mainly in the tilting angle of their terminal lithium atoms but also have slightly different BB bond lengths and BLi bridging distances. The energy difference between the two isomers amounts to 3.7 kcal/mol at MCQDPT2 (8.9 kcal/mol at B3LYP) of which **3d** is 33 kcal/mol (20 kcal/mol at B3LYP) less stable than the global minimum. From the presence of significant spin contamination we infer that multiconfigurational quasidegenerate perturbation theory gives the more accurate energies.

Structure **3e** represents a Li insertion into the BB bond, separating the boron atoms, and is clearly a high-energy isomer but nonetheless is a minimum at the MP2 and B3LYP levels. It is merely included in this study to illustrate that Li can fulfill a coordinating role in the formation of $B_x Li_y$ clusters from Li and B atoms.

 B_2Li_4 . The bonding patterns found in the smaller binary B_2 - Li_n clusters are also present and even extended in B_2Li_4 . Four minima and a transition structure were identified. Surprisingly, the global minimum is structure 4a, which has its 1.531 Å B-B bond bridged by four Li atoms. Each boron is pentacoordinated and has an inverted geometry. Because 4a and propellane 3a have similar BB bond lengths, it appears that the fourth lithium does not influence the BB bond strength. The NPA charge on the lithiums of +0.59e each is +0.18e less than in **3a**, while the charge on the B_2 fragment remains at ca. -2.35e. Thus, the interaction between the lithiums in 4a is strongly enhanced, which also agrees with the LiLi distances of 2.971 Å. Similar short distances were found for higher coordinated BLi_n (n =4-8) structures. The cohesive energy of ca. 160 kcal/mol (G2MP2, CBS-Q) translates into 40 kcal/mol per lithium, or 8 kcal/mol less than the per lithium energy for 3a, which infers a different bonding stabilization in the four-Li-bridged structure. Also the Li and Li₂ dissociation energies of the B₂Li₄ global minimum are smaller than for 3a.

Structure **4b** resembles **3a** but has an extra Li added side-on. This terminal BLi bond distorts the propellane structure only slightly and reduces the charge of the bridging lithiums to +0.63e. Its energy difference with **4a** is only 2.9 kcal/mol at G2MP2 with similar values at the other correlated levels. Evidently, the energy surface for binding the fourth lithium is rather soft, and B₂Li₄ should therefore be a rather flexible system.

Isomer 4c with the added terminal BLi bond extends the butterfly structures of 3b and 2a. Their structural properties are similar except that the terminal BLi bonds in 4c are tilted downward. Inversion via 4d (a transition structure) requires only 1.6-2.0 kcal/mol, depending on the theoretical method employed, again illustrating the flexible nature of B₂Li₄. The energy difference of 4c compared to the global minimum is 10.8 at G2MP2 and slightly less with the other methods.

Even though **4e** seems at first sight an unusual structure, it represents a B_2^{2-} dianion complexed with Li⁺ and Li₃⁺ cations at opposite sides. The terminal Li has indeed, as expected, an NPA charge of +0.74*e*, but the side-complexed triangular Li₃⁺ is strongly polarized with, in fact, a negative charge of -0.40*e* on the distal Li. Interestingly, the carbon analogue of this structure is among the two most stable C₂Li₄ isomers²² and has also been formulated as a Li⁺C₂²⁻Li₃⁺ acetylene triple ion "salt". Diboride 4e is, however, by far the least stable of the B₂Li₄ isomers.

Conclusions

This computational study of the structural and energetic details of small binary B/Li clusters reveals several characteristics, some of which are unexpected. The structural diversity of these clusters is large and differs from those of both Li/C clusters and diboranes. The most salient features are the following. (1) All B₂Li_n (n = 1-4) structures contain a B₂ unit with a short BB bond. (2) Bridging of this B_2 unit by lithiums is preferred for all B_2Li_n (n = 1-4) systems including the four Li-bridged B₂Li₄ structure. (3) All display a high degree of ionicity except for the B₂Li₄ structure in which case stabilization also occurs through LiLi interactions. (4) As a result, all structures are rather flexible. (5) B3LYP/6-31G(d) performs rather well in calculating geometries and their relative energies. Use of the extended 6-311+G(2d) basis set has little influence on the relative energies and on neither the B2 cohesive energies nor the Li and Li₂ dissociation energies. (6) These dissociation energies and even more importantly the relative energies of the isomeric structures are less than satisfactory with HF and MP2/ 6-31G(d). (7) G2MP2, CBS-Q, and MCQDPT2 perform equally well for most systems. (8) The B₂ cohesive energy tapers off when the fourth lithium is added.

Acknowledgment. This work was supported by the Air Force Office of Scientific Research (Grant F49620-96-1-0450). Several enlightening discussions with Dr. Michael W. Schmidt are gratefully acknowledged.

Supporting Information Available: Tables of NPA charges and harmonic vibrational frequencies. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Kaufman, J. J.; Sachs, L. M. J. Chem. Phys. 1970, 52, 645.

(2) Cade, P. E.; Huo, W. M. At. Data Nucl. Data Tables 1975, 15, 1.

(3) Zhu, Z. H.; Murrell, J. N. Chem. Phys. Lett. 1982, 88, 262.

(4) Knowles, D. B.; Murrell, J. N. J. Mol. Struct.: THEOCHEM 1986, 135, 169.

(5) Saxon, R. P. Theoretical Studies of Boron Compounds. *Proceedings* of the High Energy Density Matter, Woods Hole, MA, 1992.

(6) Sheehy, J. A. Spectroscopy of Lithium Boride, A candidate HEDM Species. *Proceedings of the High Energy Density Matter*, Woods Hole, MA, 1995.

(7) Schleyer, P. v. R. Pure Appl. Chem. 1983, 55, 355; 1984, 56, 151.

(8) Maercker, A.; Thies, M. Top. Curr. Chem. 1987, 138, 1.

(9) Ritchie, J. P.; Bachrach, S. M. J. Am. Chem. Soc. 1987, 109, 5909.

(10) Hehre, W.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley: New York, 1986.

(11) Schleyer, P. v. R.; Reed, A. E. J. Am. Chem. Soc. 1988, 110, 4453.
(12) Gillespie, R. J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn and Bacon: Boston, 1991.

(13) Schleyer, P. v. R.; Wurthwein, E.-U.; Pople, J. A. J. Am. Chem. Soc. 1982, 104, 5839.

(14) Ivanic, J.; Marsden, C. J.; Hassett, D. M. J. Chem. Soc., Chem. Commun. 1993, 822.

(15) Schleyer, P. v. R.; Wurthwein, E.-U.; Kaufmann, E.; Clark, T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 5930.

(16) Ivanic, J.; Marsden, C. J. J. Am. Chem. Soc. 1993, 115, 7503.

(17) Marsden, C. J. J. Chem. Soc., Chem. Commun. 1989, 1356.

(18) Fan, Q.; Pfeiffer, G. V. Chem. Phys. Lett. 1989, 162, 479.

(19) Ivanic, J.; Marsden, C. J. Organometallics 1994, 13, 5141.

(20) Schleyer, P. v. R. J. Phys. Chem. 1990, 94, 5560.

(21) Kos, A.; Poppinger, D.; Schleyer, P. v. R.; Thiel, W. Tetrahedron Lett. 1980, 21, 2151.

(22) Dorigo, A. E.; van Eikema Hommes, N. J. R.; Krog-Jesperson, K.; Schleyer, P. v. R. Angew. Chem., Int. Ed. Engl. **1992**, *31*, 1602.

(23) Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry; Interscience: New York, 1972.

(24) Nguyen, K. A.; Lammertsma, K. J. Phys. Chem. A 1998, 102, 1608.
(25) Nguyen, K. A.; Srinivas, G. N.; Hamilton, T. P.; Lammertsma, K.

J. Phys. Chem. A **1999**, *103*, 710. Meden, A.; Mavri, J.; Bele, M.; Pejovnik, S. J. Phys. Chem. **1995**, *99*, 4252.

- (26) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. **1972**, 56, 2257. Møller, C.; Plesset, M. S. Phys. Rev. **1934**, 46, 618.
- (27) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648. Becke, A. D. Phys. Rev. A **1988**, 38, 3098. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**,
- (28) Pople, J. A.; Raghavachari, K.; Schlegel, H. B.; Binkley, J. S. *Int. J. Quantum Chem. Symp.* 1979, *13*, 255.
- (29) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293. Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J.
- *Chem. Phys.* **1991**, *94*, 7221. (30) Ochterski, J. W.; Petersson, G. A.; Montgomery, J. A., Jr. J. Chem.
- *Phys.* **1996**, *104*, 2598. Ochterski, J. W.; Petersson, G. A.; Wiberg, K. B. J. Am. Chem. Soc. **1995**, *117*, 11299.

(31) Nakano, H. J. Chem. Phys. 1993, 99, 7983.

(32) Pulay, P.; Hamilton, T. P. J. Chem. Phys. 1988, 88, 4926.

(33) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *GAUSSIAN 94*, revision E.2; Gaussian, Inc.: Pittsburgh, PA, 1995.

(34) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, M.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. *J. Comput. Chem.* **1993**, *14*, 1347.

(35) Boldyrev, A. I.; Gonzales, N.; Simons, J. J. Phys. Chem. 1994, 98, 9931.

(36) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899.